Processing math: 100%
Subalgebra B12+A11E16
72 out of 119
Computations done by the calculator project.

Subalgebra type: B12+A11 (click on type for detailed printout).
Subalgebra is (parabolically) induced from B12 .
Centralizer: A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0, 0), (2, 0, 1, 0, -1, -2)
Contained up to conjugation as a direct summand of: B12+2A11 .

Elements Cartan subalgebra scaled to act by two by components: B12: (1, 2, 2, 3, 2, 1): 2, (0, -2, -1, -2, -1, 0): 4, A11: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: g36, g14+g13, g15
Positive simple generators: g36, g13+g14, g15
Cartan symmetric matrix: (210110002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (220240002)
Decomposition of ambient Lie algebra: V2ω32Vω2+ω32Vω1+ω3V2ω22Vω34Vω2Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω2+2ψ1+6ψ2Vω2+ω3+6ψ2Vω22ψ1+6ψ2V4ψ1Vω1+ω3+2ψ1Vω3+2ψ1V2ω3V2ω2Vω12V0Vω1+ω32ψ1Vω32ψ1Vω2+2ψ16ψ2V4ψ1Vω2+ω36ψ2Vω22ψ16ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 17) ; the vectors are over the primal subalgebra.g4h61/2h5+1/2h3+h1h4g4g33+g32g11g16g7g12g5+g3g10+g9g24g34g35g21g18g15
weight0000ω1ω2ω2ω2ω2ω3ω32ω2ω1+ω3ω1+ω3ω2+ω3ω2+ω32ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ1004ψ1ω1ω22ψ16ψ2ω2+2ψ16ψ2ω22ψ1+6ψ2ω2+2ψ1+6ψ2ω32ψ1ω3+2ψ12ω2ω1+ω32ψ1ω1+ω3+2ψ1ω2+ω36ψ2ω2+ω3+6ψ22ω3
Isotypic module decomposition over primal subalgebra (total 16 isotypic components).
Isotypical components + highest weightV4ψ1 → (0, 0, 0, -4, 0)V0 → (0, 0, 0, 0, 0)V4ψ1 → (0, 0, 0, 4, 0)Vω1 → (1, 0, 0, 0, 0)Vω22ψ16ψ2 → (0, 1, 0, -2, -6)Vω2+2ψ16ψ2 → (0, 1, 0, 2, -6)Vω22ψ1+6ψ2 → (0, 1, 0, -2, 6)Vω2+2ψ1+6ψ2 → (0, 1, 0, 2, 6)Vω32ψ1 → (0, 0, 1, -2, 0)Vω3+2ψ1 → (0, 0, 1, 2, 0)V2ω2 → (0, 2, 0, 0, 0)Vω1+ω32ψ1 → (1, 0, 1, -2, 0)Vω1+ω3+2ψ1 → (1, 0, 1, 2, 0)Vω2+ω36ψ2 → (0, 1, 1, 0, -6)Vω2+ω3+6ψ2 → (0, 1, 1, 0, 6)V2ω3 → (0, 0, 2, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g4
Cartan of centralizer component.
h61/2h5+1/2h3+h1
h4
g4
g33+g32
g13g14
h5+h3
2g142g13
2g32+2g33
g11
g25
g26
g12
g16
g28
g22
g7
g7
g22
g28
g16
g12
g26
g25
g11
g5+g3
g9+g10
g10+g9
g3+g5
Semisimple subalgebra component.
g24
g33+g32
g13g14
2g36
h52h4h32h2
2h64h56h44h34h22h1
2g36
2g14+2g13
2g322g33
4g24
g34
g8
g27
g5g3
g23
2g19
g9g10
2g30
2g2
2g35
g35
g2
g30
g10+g9
g19
2g23
g3+g5
2g27
2g8
2g34
g21
g31
g6
g17
g20
g1
g29
g18
g18
g29
g1
g20
g17
g6
g31
g21
Semisimple subalgebra component.
g15
h5+h4+h3
2g15
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω1
ω1+2ω2
0
ω12ω2
ω1
ω2
ω1ω2
ω1+ω2
ω2
ω2
ω1ω2
ω1+ω2
ω2
ω2
ω1ω2
ω1+ω2
ω2
ω2
ω1ω2
ω1+ω2
ω2
ω3
ω3
ω3
ω3
2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
ω1+ω3
ω1+2ω2+ω3
ω1ω3
ω3
ω1+2ω2ω3
ω12ω2+ω3
ω3
ω1+ω3
ω12ω2ω3
ω1ω3
ω1+ω3
ω1+2ω2+ω3
ω1ω3
ω3
ω1+2ω2ω3
ω12ω2+ω3
ω3
ω1+ω3
ω12ω2ω3
ω1ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
ω2+ω3
ω1ω2+ω3
ω2ω3
ω1+ω2+ω3
ω1ω2ω3
ω2+ω3
ω1+ω2ω3
ω2ω3
2ω3
0
2ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ104ψ1ω1
ω1+2ω2
0
ω12ω2
ω1
ω22ψ16ψ2
ω1ω22ψ16ψ2
ω1+ω22ψ16ψ2
ω22ψ16ψ2
ω2+2ψ16ψ2
ω1ω2+2ψ16ψ2
ω1+ω2+2ψ16ψ2
ω2+2ψ16ψ2
ω22ψ1+6ψ2
ω1ω22ψ1+6ψ2
ω1+ω22ψ1+6ψ2
ω22ψ1+6ψ2
ω2+2ψ1+6ψ2
ω1ω2+2ψ1+6ψ2
ω1+ω2+2ψ1+6ψ2
ω2+2ψ1+6ψ2
ω32ψ1
ω32ψ1
ω3+2ψ1
ω3+2ψ1
2ω2
ω1
ω1+2ω2
2ω12ω2
0
0
2ω1+2ω2
ω12ω2
ω1
2ω2
ω1+ω32ψ1
ω1+2ω2+ω32ψ1
ω1ω32ψ1
ω32ψ1
ω1+2ω2ω32ψ1
ω12ω2+ω32ψ1
ω32ψ1
ω1+ω32ψ1
ω12ω2ω32ψ1
ω1ω32ψ1
ω1+ω3+2ψ1
ω1+2ω2+ω3+2ψ1
ω1ω3+2ψ1
ω3+2ψ1
ω1+2ω2ω3+2ψ1
ω12ω2+ω3+2ψ1
ω3+2ψ1
ω1+ω3+2ψ1
ω12ω2ω3+2ψ1
ω1ω3+2ψ1
ω2+ω36ψ2
ω1ω2+ω36ψ2
ω2ω36ψ2
ω1+ω2+ω36ψ2
ω1ω2ω36ψ2
ω2+ω36ψ2
ω1+ω2ω36ψ2
ω2ω36ψ2
ω2+ω3+6ψ2
ω1ω2+ω3+6ψ2
ω2ω3+6ψ2
ω1+ω2+ω3+6ψ2
ω1ω2ω3+6ψ2
ω2+ω3+6ψ2
ω1+ω2ω3+6ψ2
ω2ω3+6ψ2
2ω3
0
2ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψ1M0M4ψ1Mω1+2ω2Mω1M0Mω1Mω12ω2Mω22ψ16ψ2Mω1+ω22ψ16ψ2Mω1ω22ψ16ψ2Mω22ψ16ψ2Mω2+2ψ16ψ2Mω1+ω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω2+2ψ16ψ2Mω22ψ1+6ψ2Mω1+ω22ψ1+6ψ2Mω1ω22ψ1+6ψ2Mω22ψ1+6ψ2Mω2+2ψ1+6ψ2Mω1+ω2+2ψ1+6ψ2Mω1ω2+2ψ1+6ψ2Mω2+2ψ1+6ψ2Mω32ψ1Mω32ψ1Mω3+2ψ1Mω3+2ψ1M2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2Mω1+2ω2+ω32ψ1Mω1+ω32ψ1Mω32ψ1Mω1+ω32ψ1Mω12ω2+ω32ψ1Mω1+2ω2ω32ψ1Mω1ω32ψ1Mω32ψ1Mω1ω32ψ1Mω12ω2ω32ψ1Mω1+2ω2+ω3+2ψ1Mω1+ω3+2ψ1Mω3+2ψ1Mω1+ω3+2ψ1Mω12ω2+ω3+2ψ1Mω1+2ω2ω3+2ψ1Mω1ω3+2ψ1Mω3+2ψ1Mω1ω3+2ψ1Mω12ω2ω3+2ψ1Mω2+ω36ψ2Mω1+ω2+ω36ψ2Mω1ω2+ω36ψ2Mω2+ω36ψ2Mω2ω36ψ2Mω1+ω2ω36ψ2Mω1ω2ω36ψ2Mω2ω36ψ2Mω2+ω3+6ψ2Mω1+ω2+ω3+6ψ2Mω1ω2+ω3+6ψ2Mω2+ω3+6ψ2Mω2ω3+6ψ2Mω1+ω2ω3+6ψ2Mω1ω2ω3+6ψ2Mω2ω3+6ψ2M2ω3M0M2ω3
Isotypic characterM4ψ12M0M4ψ1Mω1+2ω2Mω1M0Mω1Mω12ω2Mω22ψ16ψ2Mω1+ω22ψ16ψ2Mω1ω22ψ16ψ2Mω22ψ16ψ2Mω2+2ψ16ψ2Mω1+ω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω2+2ψ16ψ2Mω22ψ1+6ψ2Mω1+ω22ψ1+6ψ2Mω1ω22ψ1+6ψ2Mω22ψ1+6ψ2Mω2+2ψ1+6ψ2Mω1+ω2+2ψ1+6ψ2Mω1ω2+2ψ1+6ψ2Mω2+2ψ1+6ψ2Mω32ψ1Mω32ψ1Mω3+2ψ1Mω3+2ψ1M2ω2Mω1+2ω2Mω1M2ω1+2ω22M0M2ω12ω2Mω1Mω12ω2M2ω2Mω1+2ω2+ω32ψ1Mω1+ω32ψ1Mω32ψ1Mω1+ω32ψ1Mω12ω2+ω32ψ1Mω1+2ω2ω32ψ1Mω1ω32ψ1Mω32ψ1Mω1ω32ψ1Mω12ω2ω32ψ1Mω1+2ω2+ω3+2ψ1Mω1+ω3+2ψ1Mω3+2ψ1Mω1+ω3+2ψ1Mω12ω2+ω3+2ψ1Mω1+2ω2ω3+2ψ1Mω1ω3+2ψ1Mω3+2ψ1Mω1ω3+2ψ1Mω12ω2ω3+2ψ1Mω2+ω36ψ2Mω1+ω2+ω36ψ2Mω1ω2+ω36ψ2Mω2+ω36ψ2Mω2ω36ψ2Mω1+ω2ω36ψ2Mω1ω2ω36ψ2Mω2ω36ψ2Mω2+ω3+6ψ2Mω1+ω2+ω3+6ψ2Mω1ω2+ω3+6ψ2Mω2+ω3+6ψ2Mω2ω3+6ψ2Mω1+ω2ω3+6ψ2Mω1ω2ω3+6ψ2Mω2ω3+6ψ2M2ω3M0M2ω3

Semisimple subalgebra: W_{11}+W_{16}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (300.00, 350.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (250.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 22148 arithmetic operations while solving the Serre relations polynomial system.